Top 10 DAX Functions for Data Analysis

If you’re working with Power BI, Excel Power Pivot, or SSAS Tabular, DAX (Data Analysis Expressions) is essential for creating powerful calculations and insights. Here are the Top 10 DAX functions for data analysis:

1. CALCULATE()

  • The most powerful function in DAX! It modifies filter context and allows dynamic aggregations.
  • Example: TotalSales2024 = CALCULATE(SUM(Sales[Amount]), Sales[Year] = 2024)
  • Use case: Calculate a measure with applied filters.

2. SUM()

  • Adds up all the values in a column.
  • Example: TotalSales = SUM(Sales[Amount])
  • Use case: Basic aggregations.

3. SUMX()

  • Performs row-by-row calculations before summing up the results.
  • Example: TotalRevenue = SUMX(Sales, Sales[Quantity] * Sales[UnitPrice])
  • Use case: Ideal for calculated columns or weighted sums.

4. AVERAGE() / AVERAGEX()

  • Computes the mean of a column or an expression.
  • Example: AvgSalesPerCustomer = AVERAGEX(Sales, Sales[Amount])
  • Use case: Calculating customer purchase trends.

5. FILTER()

  • Creates a table with specific conditions.
  • Example: HighValueOrders = FILTER(Sales, Sales[Amount] > 1000)
  • Use case: Used inside CALCULATE() or table functions.

6. ALL()

  • Removes filters from a table or column.
  • Example: TotalSalesAll = CALCULATE(SUM(Sales[Amount]), ALL(Sales))
  • Use case: Comparing data without filters (e.g., percentage of total).

7. DISTINCT()

  • Returns unique values from a column.
  • Example: UniqueCustomers = COUNTROWS(DISTINCT(Sales[CustomerID]))
  • Use case: Counting unique entities.

8. RELATED()

  • Retrieves values from related tables.
  • Example: ProductCategory = RELATED(Products[Category])
  • Use case: Used in relationships between tables.

9. RANKX()

  • Assigns a rank to values based on a specified measure.
  • Example: SalesRank = RANKX(ALL(Sales), SUM(Sales[Amount]),, DESC, DENSE)
  • Use case: Ranking top-performing products or regions.

10. IF() / SWITCH()

  • IF(): Basic conditional function.
  • SWITCH(): More efficient for multiple conditions.
  • Example: SalesCategory = SWITCH( TRUE(), Sales[Amount] > 1000, "High", Sales[Amount] > 500, "Medium", "Low" )
  • Use case: Categorizing data based on conditions.

Bonus: COMBINE FUNCTIONS!

Many powerful insights come from combining DAX functions. Example:

% of Total Sales = DIVIDE(
    SUM(Sales[Amount]),
    CALCULATE(SUM(Sales[Amount]), ALL(Sales))
)

This calculates each sale as a percentage of total sales.